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Abstract. The tunneling magnetoresistance (TMR) of a small magnetic dot array with perpendicular
anisotropy, is studied by using a resistor network model. Because of the competition between dipolar
interaction and perpendicular anisotropy, the TMR ratio can be up to a maximum value (∼26%) as
predicted by a theoretical model. At moderate dipolar interaction strength, the perpendicular TMR ratio
exhibits abrupt jumps due to the switching of magnetic moments in the array when the applied field
(normal to the array plane) decreases from a saturation field. This novel character does not occur if the
dipolar interaction between particles is quite strong. Furthermore, the effect of the array size N on TMR
is also studied and the result shows that TMR ratio fluctuates when N increases for a moderate dipolar
interaction strength. When the applied field he is parallel to the array plane, the in-plane TMR curve
seems insensitive to the dipolar interaction strength, but the maximum TMR ratio (∼26%) can also be
obtained at he = 0.

PACS. 75.47.-m Magnetotransport phenomena; materials for magnetotransport – 75.60.Jk Magnetization
reversal mechanisms – 75.50.Tt Fine-particle systems; nanocrystalline materials

Periodic arrays of single-domain magnetic dots are of
substantial interest for applications in future ultrahigh-
density magnetic storage media and magnetic field sen-
sors [1–5]. In such arrays, each nanoparticle may be viewed
as a giant magnetic dipole. One key issue in the research
effort on magnetic nanoparticle arrays is to understand
the hysteretic behaviour and the underlying magnetiza-
tion reversal mechanism. Due to the high density, small
particles with a high aspect ratio and a large perpendicu-
lar anisotropy are needed for thermal stability of the mag-
netization state (superparamagnetic limit) [6,7]. In these
patterned arrays, the dipolar fields may be comparable to
bulk anisotropy fields due to the high density of magnetic
particles and therefore have the potential to strongly affect
static magnetic order and magnetization process. Much
experimental work and various numerical studies have fo-
cused on the ground state configuration and the hysteretic
behaviour of dipolar interacting nanoparticle arrays [1–5].
In our previous work, we studied the interplay between
dipolar interactions and perpendicular anisotropy in small
dot arrays [5]. The dipolar interaction between particles
tends to keep some moments in the opposite direction to
the majority, although all the moments are pointing per-
pendicularly to the array [5]. At a certain dipolar inter-
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action strength, an out-of-plane antiferromagnetic (OAF)
configuration will occur. In the case of very strong inter-
actions, the out-of-plane magnetization of the nanopar-
ticles reorients to an in-plane direction. However, it will
not occur in small dot arrays with a large perpendicular
anisotropy.

For such patterned nanoparticle arrays, much research
work has been done in order to understand the magnetic
properties. However, only a little work has studied the
magnetotransport in patterned media [8,9]. Because of the
insulating nature between neighbouring particles, which
prevents electron transfer between neighbouring nanopar-
ticles, the conductivity of patterned media is dominated
by an electron tunneling or hopping mechanism. For
example, the conductivity of a cobalt nanoparticle self-
assembled film leads to a large (∼10%) tunneling mag-
netoresistance (TMR) at low temperature [8]. Tunneling
magnetoresistance was first found by Julliere [10] in 1975,
where a classical theory for tunneling was suggested based
on the conduction-electron spin-polarization values (P1

and P2) of the FM(ferromagnet) electrodes, giving the
tunneling magnetoresistance

TMR = (Ra − RP )/Ra = 2P1P2/(1 + P1P2). (1)

Here RP and Ra are the resistances with magnetizations
of the electrodes parallel and antiparallel, respectively. For
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a Fe-Co tunnel junction, with P of 40% and 30%, re-
spectively, for the two FM’s, the above expression gives a
24% change in the tunneling resistance between the an-
tiparallel and parallel orientations of M in the two FM
electrodes. In tunnel-type magnetic nanostructures, the
charge transport is caused by tunneling through insulating
barriers. Electron tunneling depends on the relative orien-
tation of magnetic moments between ferromagnetic gran-
ules. The tunneling resistance decreases when the mag-
netic moments of the granules are aligned in parallel in an
applied magnetic field. For patterned nanoparticle arrays,
the transport of electrons involves a number of granules,
and the moments of the granules interact via dipole forces.
In this system, magnetic-moment configurations of the ar-
ray are dominated by the competition of the anisotropy
energy, dipolar interaction energy and Zeeman energy. Es-
pecially for small arrays, magnetic-moment configurations
are sensitive to the strength of the dipolar interaction be-
tween particles, and the system exhibits unusual magneti-
zation dynamics [5]. Thus, driven by the applied magnetic
field, the unusual magnetization processes are expected
to cause the novel magnetoresistance phenomena in these
small patterned arrays.

We assume the cylindrical dots to be arranged in a
square lattice. The identical dots are considered as single-
domain magnetic nanoparticles with their easy axes nor-
mal to the array plane, and they interact via dipolar
forces. When an external magnetic field is applied to such
an array, the magnetic moments of the particles may reori-
entate due to the competition between the dipolar interac-
tion, anisotropy energy, and Zeeman energy. To obtain the
equilibrium magnetic-moment configuration, we define the
position of the ith dot by a position vector ri = x̂pa+ ŷqa
where a is the lattice spacing and p and q are integers.
The motion of the magnetic moment m in the array can
be described by the LLG equation

dmi

dt
= −γmi × Hi +

α

m
mi × dmi

dt
, (2)

where γ is the gyromagnetic ratio, and α controls the rate
of dissipation. The local magnetic field Hi at site ri in-
cludes the external magnetic field he, the dipolar field hdip

and a single-particle effective anisotropy field perpendicu-
lar to the array given by kmziẑ = (2K/Ms)mziẑ, where K
is the anisotropy energy and Ms is the saturated magne-
tization of the particle and mzi = cos(m, ẑ). With these
definitions, the field Hi is given as

Hi = he + hdip + kmziẑ, (3)

where the dipolar field can be written as

hdip = hdMs

∑

j �=i

3(r̂ij · m̂j)r̂ij − m̂j

r̃3
ij

, (4)

where hd = V/a3, V is the volume of a particle, r̂ij is
the unit vector pointing from dipole moment mi to mj ,
and m̂j is the unit vector of moment mj , and r̃ij = rij/a.
Inspection of equation (2) shows that it can be written in

spherical coordinates involving only two degrees of free-
dom for each dot. The problem is then treated by nu-
merically solving the set of 2N2 coupled equations for
a square dot array of dimension N using the four-order
Runge-Kutter method [5].

For a given magnetic-moment configuration {mi}
of the nanoparticle array, we use a resistor network
model [11] to study the TMR effect. Due to the spin-
dependent tunneling, the conductance between two sep-
arated nanoparticles i and j can be written as [8,9,12]

σij ∝ (
1 + P 2 cos θij

)
exp(−rij/λ − Ec/kBT ), (5)

where P is the spin polarization, θij is the relative an-
gle between neighbouring moments, Ec = e2/2C is the
activation energy to charge a neutral nanoparticle by
the addition of a single electron, C is the nanoparti-
cle capacitance relative to its surrounding medium, and
λ = �/

√
8m∗(U − EF ) is the decay length of the electron

wave function in the insulating barrier of height U rela-
tive to the Fermi energy EF , m∗ is the effective mass of
electrons. In all our simulations, we assumed λ = a, as
a sufficient requirement to allow charge transfer between
neighbouring nanoparticles and assumed P = 0.34 corre-
sponding to the value of a cobalt nanoparticle [8,9,13].
The form of equation (5) predicts a linear behaviour of
ln σ vs. 1/T for nanoparticles with a negligible size dis-
persion, which was observed in a recent experiment [8]. In
this paper, we focus on the effect of the magnetic-moment
configuration on the TMR ratio, thus we take T as a con-
stant in our calculation. Equation (5) neglects the mag-
netic exchange energy EM , which was considered by Inoue
and Maekawa [12] and has a negligibly small contribu-
tion for cobalt nanoparticles at low temperatures. Thus,
we expect that the contribution of EM to TMR in our
model is small, and that it can be neglected. Inspection of
equation (5) suggests that the orientations of neighbour-
ing magnetic moments will affect the conductance between
them. Consequently, the system’s conductance σ will be
dependent on the magnetic-moment configuration of the
array. Therefore, it causes the TMR effect after we apply
an external magnetic field he to the array. The TMR ratio
is defined by

TMR(he) =
σ(hs) − σ(he)

σ(he)
, (6)

where hs is the saturation field which makes all the mag-
netic moments orientate along it. By considering equa-
tions (5) and (6), one can immediately get a theoretical
maximum TMR (=2P 2/(1 − P 2)) if spin electrons only
transfer between nearest neighbours. In our model, the
theoretic maximum TMR ratio is about 0.26 for P = 0.34.

The system’s conductance is calculated in the following
way: we start with a square lattice array, where each site
represents a magnetic moment (see Fig. 1). Between the
nearest neighbour sites, we insert a resistor, whose con-
ductance (or resistance) is phenomenologically expressed
by equation (5). The total conductance (or resistance) is
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Fig. 1. An example of the construction of a resistor network
with particles distributed on a square lattice.

calculated with the framework of RN. For a small mag-
netic dot array, we use free boundary conditions, and the
voltage is applied to two nanoparticles on the diagonal of
the array. We assume that the spin-dependent electrons
only transfer between the nearest neighbour sites, that is,
we insert a resistor only between the nearest neighbour
sites. The TMR ratio is obtained after the magnetic mo-
ments reach the equilibrium state at a given he. In all the
calculations, we take k/Ms = 4.0 and α = 0.2.

1 Results and discussion

The TMR ratio as a function of the applied magnetic
field, which is normal to the array plane, is shown in Fig-
ure 2 for two different dipolar interaction strengths. Two
configurations A and B of the moments corresponding
to the plateaus in the perpendicular TMR are shown in
the inset of Figure 2a, where the arrow head indicates
the orientation of a magnetic moment. It means that,
when the magnetic-moment configuration changes from
the initial saturation configuration (all the moments in the
+z-direction) into configuration A or B, the TMR ratio is
about 13% or 26%. In small arrays, it can be seen that the
TMR ratio is closely related to the magnetic-moment con-
figurations. It is worth noting that, the jumps in Figure 2
correspond to the evolution of the magnetic-moment con-
figurations. For example, when he/Ms = −1.8, by compar-
ing with the case of configuration B, the configuration A
has four moments flipped which are located at the four cor-
ners of a 5×5 array and hence the TMR ratio jumps from
∼13% to ∼26%. The evolution of the magnetic-moment
configuration is caused by the competition between the
anisotropy energy, the dipolar interaction and the Zeeman
energy. Since the uniaxial anisotropy lowers the energy of
the moments if they align perpendicularly to the array,
configurations with the moments pointing at any polar
angles other than θ ≈ 0 and θ ≈ π have higher ener-
gies. Thus, for a moment to flip from the +z-direction
to −z-direction, it needs to pass over an energy barrier.
Only when the external field reaches a certain value will
the energy barrier be surpassed with the assistance of the
Zeeman energy [14]. Thus, some moments of the array
flip when he decreases from an initially saturated field

Fig. 2. The TMR ratio as a function of the applied mag-
netic field normal to the array plane for a 5 × 5 dot array
with hd = 0.6 and hd = 1.5. The magnetic-moment configura-
tions A and B corresponding to the TMR ratios 0.13 and 0.26,
respectively, are also shown in the sketches.

hs (shown in Fig. 2a), which results in a sudden change
of the values of some resistor bars in the RN and hence
the jumps occur. This feature is quite different from those
in randomly distributed granular composites [15] or poly-
crystalline compounds [16]. Based on equation (5), σij is
low if the two moments of the particles i and j are an-
tiparallel to each other, while it is high if they are paral-
lel to each other. Therefore, when some of the moments
switch as he decreases, the number of high-value resistors
increases in the RN and hence the total resistance of RN
becomes high, which causes the increase in the TMR ratio.
Obviously, if the magnetic moments can be in an antipar-
allel state at certain he, the TMR ratio will be maximum
according to equation (5). In our model, the maximum
TMR ratio (∼0.26) predicted by theoretical calculation
can be obtained since the OAF state is realized within
a certain range of he (illustrated by B in Fig. 2a). The
maximum TMR ratio is larger than that obtained in a
random anisotropy dot array (about 0.1) [9]. For larger hd

(see Fig. 2b), the maximum TMR again can be reached
due to the antiparallel orientations of magnetic moments.
However, the many small drops disappear in comparison
with Figure 2a. This is due to the strong dipolar interac-
tion for which there is no longer any restriction that the
magnetic moments be normal to the array plane when the
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Fig. 3. The values of TMR as a function of array size N with
different dipolar interaction strengths.

configuration is not in an antiferromagnetic state. Thus,
the TMR curve tends to look smoother than that in Fig-
ure 2a. Note that, the TMR curve is not symmetric in
terms of he, meaning that the TMR shows hysteresis be-
haviour when one applies an external field normal to the
array plane.

As discussed above, the magnetic-moment configu-
ration greatly affects the TMR ratio. In our previous
work [5,14], we found that the size of the small dot array
is important to the formation of an equilibrium config-
uration at a certain dipolar interaction strength. There-
fore, it is necessary to investigate the influence of array
size and dipolar interaction on the perpendicular TMR.
The result is shown in Figure 3. Here the TMR (he = 0)
is obtained by switching off he from hs to zero directly.
There are two limiting cases for which the TMR is inde-
pendent of the size of the small dot array. One limiting
case is the weak dipolar interaction. In our model, when
hd ≤ 0.3, the TMR is approximately equal to zero. It
indicates that the saturated magnetic-moment configura-
tion (with all the moments pointing along +z-direction)
does not change when the saturated field hs becomes zero.
In this weak dipolar interaction region, the magnetic mo-
ment in the array behaves similarly to an isolated moment.
Due to the large perpendicular anisotropy, all the mag-
netic moments still point along +z-direction as he = 0.
Therefore, the TMR ratio is zero. The other limiting case
is the strong dipolar interaction. When hd ≥ 1.4, the
TMR reaches the theoretically predicted maximum value
(∼0.26) at he = 0. It means that the strong dipolar in-
teraction between particles forces the magnetic moments
into an OAF configuration when he is zero. In this dipo-
lar region, the anisotropy energy barrier can be overcome
due to the interaction between particles and the collec-
tive behaviour of the particles are apparent. The magnetic
moments can tune themselves to an OAF configuration
in terms of the strong dipolar interaction. Therefore, the
TMR ratio reaches a maximum value and becomes inde-

Fig. 4. The TMR ratio as a function of the applied magnetic
field parallel to the array plane for a 5×5 dot array at different
dipolar interaction strengths.

pendent of the array size. However, when the dipolar inter-
action strength is moderate, in the region 0.3 < hd < 1.4,
the array size N significantly affects the TMR ratio. In
Figure 3, we give two values of hd as examples. The fluc-
tuation of TMR indicates that the magnetic-moment con-
figuration varies for different N though the dipolar inter-
action strength between the moments is fixed. To obtain
the final magnetic-moment configuration, the competition
between the long-range dipolar interaction and anisotropy
energy should be considered. More details can be found in
references [5] and [14].

The TMR ratio as a function of the applied magnetic
field, which is parallel to the array plane, is shown in
Figure 4. It seems that the in-plane TMR curves are in-
sensitive to the dipolar interaction strength, which is dif-
ferent from the perpendicular TMR (shown in Fig. 2).
As the applied field gradually decreases from a satura-
tion field hs, the magnetic moments will gradually transit
from an in-plane orientation to an out-of-plane orienta-
tion. This smooth transition is tuned by the coupled dipo-
lar field. While the nanoparticle has its easy axis normal
to the array plane, the dipolar interaction will force the
neighbouring moments in opposite directions so as to re-
duce the total energy. Thus, when he gradually decreases
to zero, the magnetic-moment configuration will evolve
into the OAF configuration and the value of TMR will
reach a maximum. We also note that the in-plane TMR
ratio is almost independent of the array size.

In summary, the TMR effect exhibits a close much de-
pendence on the magnetic-moment configuration, which
is tuned by the dipolar interaction in small magnetic dot
arrays. The dipolar interaction prefers the magnetic mo-
ments to form an OAF configuration in strong perpendic-
ular anisotropy dot arrays and the TMR ratio can be up
to a theoretically predicted maximum (∼0.26). The per-
pendicular TMR shows abrupt jumps due to the switching
of the magnetic moments in the array as the applied field
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decreases. This novel feature may be useful for applica-
tions. The perpendicular TMR ratio shows fluctuations
as the array size increases at moderate dipolar interaction
strength. This fluctuation disappears in both the weak
and strong dipolar interaction regions. The in-plane TMR
curve seems insensitive to the dipolar interaction strength,
but the maximum TMR ratio can be obtained at he = 0
for different dipolar interaction strengths.
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